Check for updates

Blood 142 (2023) 818-820

The 65th ASH Annual Meeting Abstracts

ORAL ABSTRACTS

613.ACUTE MYELOID LEUKEMIAS: CLINICAL AND EPIDEMIOLOGICAL

Influence of Bone Marrow Blast Enumeration and Co-Occurring Myelodysplasia Related Gene Mutations in *NPM1*-Mutated Myeloid Malignancies

Curtis A Lachowiez, MD¹, Georgios Asimomitis^{2,3}, Elsa Bernard, PhD², Ivory Tang⁴, Yanis Tazi, MSc, BSc⁵, Amanda Gilkes⁶, Ian Thomas⁷, Lars Bullinger⁸, Konstanze Döhner⁹, Hartmut Dohner, MD¹⁰, Brian Huntly, PhD^{11,12}, Nigel H. Russell, MD¹³, Sanam Loghavi, MD¹⁴, Elli Papaemmanuil¹⁵

¹ Knight Cancer Institute, Oregon Health & Science University, Portland, OR

- ²Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY
- ³Biomedical Systems Laboratory, Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece

⁴Memorial Sloan Kettering Cancer Center, New York, NY

- ⁵Memorial Sloan Kettering Cancer Center, New York
- ⁶Cardiff University, Cardiff, GBR
- ⁷Cardiff University, Cardiff, United Kingdom
- ⁸Charité Universitätsmedizin Berlin, Berlin, Germany
- ⁹Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- ¹⁰Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
- ¹¹Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- ¹²Cambridge Institute For Medical Research, University of Cambridge, Cambridge, GBR
- ¹³Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- ¹⁴Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
- ¹⁵Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY

Introduction

Both World Health Organization (WHO 5th) and International Consensus Classification (ICC) guidelines recognize mutations in nucleophosmin 1 (*NPM1*^{mut}) as a class defining molecular event in acute myeloid leukemia (AML). WHO 5th omitted the blast percentage requirement and ICC lowered the blast threshold to 10%. *NPM1*^{mut} AML without *FLT3* ITD or adverse risk cytogenetics is considered favorable risk in European LeukemiaNet (ELN) 2022, however co-occurring adverse-risk myelodysplasia related mutations (MR^{mut}) do not influence ELN 2022 risk stratification. This analysis addresses the prognostic impact of blast enumeration in *NPM1*^{mut} myeloid neoplasms (MN) with <10% blasts and influence of co-occurring mutations in *NPM1*^{mut} AML.

Methods

We interrogated publicly available data from adult (\geq 18 years) patients (pts) with chronic myeloid neoplasms included in the International Working Group for Prognosis in MDS (N= 3,323; Bernard et al. *NEJM Evid* 2022) and two independent AML cohorts (AMLSG [N=1540] Papaemmanuil et al. *NEJM* 2016; UKNCRI [N=2,113] Tazi et al. *Nat. Commun.* 2022). Between group differences were assessed using the Wilcoxon rank-sum test or Fisher's exact test as appropriate. Time to event endpoints were analyzed using the log-rank method. Multivariate analysis (MVA) used cox proportional hazards regression.

Results

NPM1 ^{mut} was identified in 17% (N=1148) of pts (AML: 30% [1109/3653], MN with <20% blasts: 1.2% [39/3,323]). Compared to pts with *NPM1* ^{mut} AML, pts with *NPM1* ^{mut} MN (MDS, CMML, aCML) with blast < 20% were older (median age 65 vs. 55 years, p < 0.001), had a lower median total WBC count (5 vs. 32 x10 $^{\circ}$ /L, p < 0.001) and bone marrow (BM) blast percentage (8% vs. 76%, p < 0.001). No significant difference was observed between *NPM1* ^{mut} AML and MN with <20% blasts in median hemoglobin (9.1 vs. 9 x10 $^{\circ}$, p: 0.44), platelets (62 vs. 66 x10 $^{\circ}$ /L, p: 0.55), or *NPM1* ^{mut} variant allele frequency (VAF; 35% vs. 37%, p: 0.64).

After a median follow up of 4.7 years (range: 0-12), no difference in overall survival (OS) was observed between pts with low blast (LB; <10%) NPM1^{mut} MN (N=19) vs. \geq 10% blasts (N=18) (median OS: 0.64 years [95% CI: 0.31-3.0] vs. 1.1 years [95\% CI: 0.31-3.0]

0.95-NR], p=0.32). Median leukemia free survival (LFS) was 0.81 years (95% CI: 0.67-1.5) and not significantly different between NPM1 ^{mut} MN pts with <10 vs. \geq 10% blasts (median LFS: 0.55 vs. 0.91 years, p=0.27).

In pts with *NPM1*^{mut} AML (N=1109), 52% (N=581) were ELN 2022 favorable-risk; 15% (N=92) had MR^{mut} including *SRSF2* (51%, N=47), *STAG2* (21%, N=19), *ASXL1* (9%, N=8), *BCOR* (9%, N=8), *RUNX1* (8%, N=7), *EZH2* (5%, N=5), *SF3B1* (5%, N=5), *U2AF1* (1%, N=1), and *ZRSR2* (1%, N=1). Pts with MR^{mut} were older (median age 62 vs. 53 years, p < 0.001), had higher BM blasts (80% vs. 72% p=0.019), and lower platelets (45 vs. 77 x10 °/L p < 0.001) compared to pts with *NPM1*^{mut} AML without MR^{mut}. No significant difference in *NPM1*^{mut} VAF was observed (34% in both groups).

After a median follow up of 3.5 years (range: 0-15), median OS was 6.2 years in pts with *NPM1* ^{mut} AML (95% CI: 4.2-9.7). Inferior OS was observed in ELN favorable risk *NPM1* ^{mut} pts with vs. without MR ^{mut}, respectively (2 vs. 8.4 years, p=0.0001). When stratified by age < 60 vs. \geq 60 years, younger pts with MR ^{mut} had an increased risk of death (HR 1.7 95% CI: 1.1-2.8, p: 0.02). No OS difference was observed in older pts with or without MR ^{mut} (HR: 1.2, 95% CI: 0.80-1.68, p=0.44), however OS was significantly shorter in older pts with *NPM1* ^{mut} compared to younger pts (median 1.7 years vs. NR, p < 0.001). Patients with *NPM1* ^{mut} /MR ^{mut} AML had survival comparable to patients with ELN 2022 intermediate risk AML (2.0 vs. 2.1 years, p=0.35). In MVA of *NPM1* ^{mut} VAF, and treatment setting (AMLSG or UKNCRI), the presence of an MR ^{mut} (HR 1.39 [95% CI: 1.0-1.9], p=0.04), age < 60 (HR 0.43 [95% CI: 0.32-0.56], p < 0.001), and performance status (HR 1.35 [95% CI: 1.14-1.60], p=0.004) retained statistical significance.

Conclusion

Pts with low blast *NPM1* ^{mut} MN have outcomes similar to pts with *NPM1* ^{mut} AML, supporting *NPM1* ^{mut} as an AML defining event irrespective of BM blast enumeration. In patients with ELN favorable risk *NPM1* ^{mut} AML, co-occurrence of MR ^{mut} is independently associated with inferior survival, comparable to ELN intermediate risk AML. These results may inform future refinements of current consensus guidelines.

Disclosures Lachowiez: COTA Healthcare: Consultancy; Rigel Pharmaceuticals: Other: Advisory board. Bullinger: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees; Astellas: Honoraria; Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees; Abbvie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer Oncology: Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria; Bristol-Myers Squibb: Honoraria; Daiichi Sankvo: Honoraria; Sanofi: Honoraria. Döhner: BMS: Consultancy, Research Funding, Speakers Bureau; Celgene: Consultancy, Research Funding, Speakers Bureau; CTI: Consultancy, Speakers Bureau; Novartis: Consultancy, Research Funding, Speakers Bureau; Roche: Consultancy, Speakers Bureau; Abbvie: Consultancy; Daiichi Sankyo: Consultancy; Janssen: Consultancy; Jazz: Consultancy; Astellas: Research Funding; Agios: Research Funding. Dohner: AbbVie: Consultancy, Research Funding; Agios: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Astellas: Consultancy, Research Funding; AstraZeneca: Consultancy; Berlin-Chemie: Consultancy; Bristol Myers Squibb: Consultancy, Research Funding; Celgene: Consultancy; GEMoaB: Consultancy; Gilead: Consultancy; Janssen: Consultancy; Jazz Pharmaceuticals: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Syndax: Consultancy; Kronos-Bio: Research Funding. Russell: Pfizer: Honoraria, Research Funding, Speakers Bureau; Jazz Pharma: Research Funding; Servier: Honoraria; Astellas: Honoraria. Loghavi: QualWorld: Consultancy; Guidepoint: Consultancy; Astellas: Research Funding; Amgen: Research Funding; Daiichi Sankyo: Consultancy; Caris Diagnostics: Consultancy; Gerson Lehrman Group: Consultancy; Abbvie: Consultancy; Blueprint Medicine: Consultancy; Recordati/EUSA Pharma: Consultancy; Abbvie: Current equity holder in publicly-traded company. Papaemmanuil: TenSixteen Bio: Current equity holder in private company; Isabl Inc.: Current equity holder in private company, Current holder of stock options in a privately-held company, Other: CEO, Patents & Royalties: Whole genome cancer analysis.

Session 613

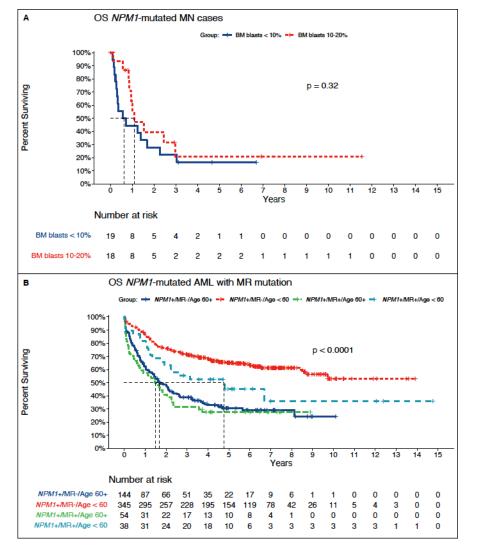


Figure 1

https://doi.org/10.1182/blood-2023-179598